ENVIRONMENTAL PRODUCT DECLARATION
as per ISO 14025 and EN 15804

Owner of the Declaration | Cembrit Holding A/S
Programme holder | Institut Bauen und Umwelt e.V. (IBU)
Publisher | Institut Bauen und Umwelt e.V. (IBU)
Declaration number | EPD-CEM-20160113-IAD1-EN
Issue date | 02/12/2016
Valid to | 01/12/2021

Fibre cement slates
Cembrit Holding A/S

www.bau-umwelt.com / https://epd-online.com
1. General Information

Cembrit Holding A/S

Programme holder
IBU - Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

Declaration number
EPD-CEM-20160113-IAD1-EN

This Declaration is based on the Product Category Rules:
Fibre cement / Fibre concrete, 07.2014
(PCR tested and approved by the SVR)

Issue date
02/12/2016

Valid to
01/12/2021

Verification
The CEN Norm /EN 15804/ serves as the core PCR
Independent verification of the declaration according to /ISO 14025/

Prof. Dr.-Ing. Horst J. Bossmayer
(President of Institut Bauen und Umwelt e.V.)

Dr. Burkhard Lehmann
(Managing Director IBU)

Dipl. Natw. ETH Sascha Iqbal
(Independent verifier appointed by SVR)

2. Product

2.1 Product description
The products are in fibre cement. The slates are commonly provided with a water-based coating but some products are provided uncoated. The declaration includes all coated and uncoated products. Finishing accessories such as ridges and ventilation outlets are available in fibre cement or plastic.

2.2 Application
Cembrit slates are intended for installation as roofing and/or cladding on wooden sub constructions.

2.3 Technical Data
The data listed in the DoP apply.

Structural data (/EN492/, Class B, 4 mm thickness)

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross density (dry)</td>
<td>1850</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Bending moment</td>
<td>50</td>
<td>Nm/m</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.3 - 0.4</td>
<td>W/(mK)</td>
</tr>
<tr>
<td>Water vapour permeability (PAM), coated</td>
<td>approx. 10</td>
<td>mmHg hr m²/g</td>
</tr>
<tr>
<td>Moisture content at 23°C, 80% humidity</td>
<td>10</td>
<td>M.-%</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>10</td>
<td>10⁴/K⁻¹</td>
</tr>
</tbody>
</table>

2.4 Placing on the market / Application rules
For the placing on the market in the EU/EFTA (with the exception of Switzerland) the Regulation (EU) No 305/2011 applies. The product needs a Declaration of Performance (DoP) taking into consideration EN 492:2012: Fibre-cement slates and fittings. Product specification and test methods and the CE-marking.

For the application and use the respective national provisions apply.

BBA Certificate Number 03/4041 Certificate Product Sheetrelates to acrylic-coated, fibre-reinforced cement slates
The factory is certified /ISO 9001:2008/.

- Czech Republic: Bureau Veritas Republik s.r.o.,
Certificate No. 1100071.

2.5 Delivery status
Width x Length x thickness (max 600 x 600 x 4 mm) depending on type. Cembrit slates are delivered in natural grey and coated versions in various colours with either a smooth and even surface or textured surface.

2.6 Base materials / Ancillary materials

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement type CEM I</td>
<td>75.5-78.5</td>
<td>%</td>
</tr>
<tr>
<td>Inert filler (limestone, mica, microsilica)</td>
<td>16</td>
<td>%</td>
</tr>
<tr>
<td>Material</td>
<td>Amount</td>
<td>%</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>Cellulose</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Polyvinyl Alcohol PVA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pozzolanic Filler (cenospheres from fly ash)</td>
<td>0-3</td>
<td></td>
</tr>
<tr>
<td>Acrylic emulsion</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron oxide, titanium dioxide and carbon black pigments</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Mould oil</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Fatty alcohol</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Butyloxypropanol and hexylene glycol</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Polysiloxanes</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Polyurethane based thickener</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Due to chemically bond water (12.5%), only approx. 840 kg of material is used for 1 ton of product. Coatings (manufactured or bought in) are water-based acrylic and use mainly iron oxide pigments. The products do not contain any SVHCs according to REACH declarations from material suppliers and backwards in the entire production chain.

Material explanation

- **Portland Cement**: Manufactured according to /DIN EN 197-1/ from limestone, marl and sand. The material is crushed, dried and calcinated to clinker and then ground to form cement.
- **Inert filler**: a filler to optimize deformation properties and material bonding.
- **Cellulose Fibres (0.5-3mm)**: To assure collection of powder during filtration. Sourced from FSC sources (FSC Chain of Custody Certification).
- **PVA fibres (4-6mm)**: Synthetic Polyvinyl-Alcohol fibre used as reinforcement.
- **Pozzolanic filler**: Cenospheres from fly ash used for improving product performance.

Manufacture

Cembrit slates are manufactured with Hatschek technology. A very thin slurry of water, binder and fibres is mixed and introduced into each of the vats of the Hatschek machine.

The rotating sieve cylinder in the vats collects a thin layer of solid materials that is further dewatered as it is transferred to a felt and further on to an accumulating format roller. At the required thickness, the accumulated layers are automatically cut-off the format roller. A cementitious top-layer is applied to the first layer of the sheet. Hereafter, the slate is cut into the required product size, and transferred into the pre-curing area. After pre-curing, the product is stored under continuous control of temperature and humidity. Cembrit slates are delivered in natural grey and coated versions in various colours with either a smooth and even surface or textured surface. The backside has an anti-blocking treatment.

Environment and health during manufacturing

Dust developing during the processing can cause a slight alkaline reaction (pH > 12) but can be avoided with standard dust extractors.). Cembrit operates an environmental management system certified according to ISO 14001:2004:
- Czech Republic: Bureau Veritas Czech Republik s.r.o., /Certificate No 11000072/.

Product processing/Installation

Slates are used for covering roofs of different shapes and pitches and also for exterior wall cladding. The sheets can be delivered with or without pre-punched holes and cut corners. When cutting, sufficient protection against dust must be ensured. E.g. Festool dust extractor CTH26E is able to handle dust with MAC values < 0.1 mg/m³. According to German regulation /TRGS 900/ the limit for general dust is 6 mg/m³. Additional products necessary (screws, join strip, bird blocks, etc.) are not the subject of this declaration.

Environment and health during use

Based on current knowledge, hazards to water, air and soil will not arise from fibre cement boards. Testing to the Dutch Soil Decree, as stated in /BRL 5071/ demonstrates this for water and soil.

Reference service life

Reference service life is optional for a cradle-to-gate EPD and is not declared.

Extraordinary effects

Fire

Slate Products, both painted and unpainted comply with building material class A1 according to /EN 13501-1/ i.e. "non-combustible".

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building material class</td>
<td>A1-s1,d0</td>
<td></td>
</tr>
<tr>
<td>Burning droplets</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Smoke gas development</td>
<td>s1</td>
<td></td>
</tr>
</tbody>
</table>

Water

No relevant information
2.15 Re-use phase
Undamaged sheets can be directly reused. The sheets can be re-pulverized and used as additive in the production of fibre cement or can be used e.g. in road construction or anti-noise barriers.

2.16 Disposal
Fibre cement can be deposited without pre-treatment. Waste code: 170101 (Concrete) according to the European Waste Catalogue /EWC/.

2.17 Further information
Please contact info@cembrit.com

3. LCA: Calculation rules

3.1 Declared Unit
The declared unit and conversion factor are listed in the table below. Annual production data was used apportioned by mass.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared unit</td>
<td>1</td>
<td>t</td>
</tr>
<tr>
<td>Gross density</td>
<td>1850</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Conversion factor to 1 kg</td>
<td>0.001</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2 System boundary
The following processes were included in the A1-A3 production stage of the Cembrit corrugated sheets:
- A1: Manufacture of preliminary products (Cement, fillers, cellulose, PVA fibre, pigments, coatings and water)
- A2: Transport of raw materials and packaging
- A3: Manufacturing process in the plant including energy, water, disposal and process emissions
- A3: Manufacture of packaging materials

3.3 Estimates and assumptions
The following dataset approximations were chosen from the /GaBi database/:
- Burning of LPG: thermal energy from propane
- Virgin cellulose: Kraftliner (Brown)
- Mica: kaolin
- Silicate dust: Silica fume (ferro-silicium)
- Back coat, Acrylic paint, Primer and paint pigments: Water-borne paint, industry black

The weight of the any coated or uncoated fibre cement products is assumed identical.

3.4 Cut-off criteria
All significant inputs to mass or energy (>1%) have been considered, i.e. all raw material, pre-products, and energy consumptions. Cutoffs are estimated to be less than 2% in total. All significant outputs (>1% per impact) are included. Machines, facilities and other capital goods are excluded. Packaging for incoming raw material (0.08% of the product mass) has been excluded.

3.5 Background data
Background data is taken from the /GaBi 6 software/, see www.gabi-software.com/databases/

3.6 Data quality
The input data for raw material production and the consumption of process energy is measured data acquired directly from the sites. Data was checked for plausibility and can be classified as being good. Background data was taken from thinkstep’s GaBi database 2015. The GaBi electricity grid mix relates to 2011 data from the International Energy Agency and considered of good data quality. More information at http://documentation.gabi-software.com/.

3.7 Period under review
The input data is annual data from 2014.

3.8 Allocation
Electricity and thermal energy recovery from waste incineration is looped back into module A3 to offset input of primary energy. A closed loop recycling of fibre cement material is not modelled.

The outputs of the production system being assessed are products which are near identical in terms of material composition, mass and value. As such, no allocation has been applied to the system overall.

3.9 Comparability
Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information

Modules A4-A5, B, C and D are not declared. Packaging from A3 to be disposed of at installation is listed as A5 below although excluded from the results.

The packaging included in module A3 that needs to be disposed of at installation is listed as module A5 below although the disposal is excluded from the actual modelling.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood pallets</td>
<td>16.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Cardboard protection edge 1.05 kg
Paper inserts 0.71 kg
Cardboard boxes 0.50 kg
PE foil 0.50 kg
PET strips 0.29 kg
PP strips 0.27 kg
5. LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Assembly</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MND</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 ton of fibre cement slates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential (kg CO₂-Eq.)</td>
<td>9.46E+2</td>
<td>1.07E+1</td>
<td>1.42E+1</td>
</tr>
<tr>
<td>Depletion potential of the stratospheric ozone layer (kg CFC11-Eq.)</td>
<td>3.44E-6</td>
<td>2.19E-5</td>
<td>2.51E-8</td>
</tr>
<tr>
<td>Acidification potential (kg SO₂-Eq.)</td>
<td>2.97E+0</td>
<td>9.03E-2</td>
<td>3.79E-2</td>
</tr>
<tr>
<td>Eutrophication potential (kg PO₄-Eq.)</td>
<td>2.17E-1</td>
<td>1.41E-2</td>
<td>9.53E-3</td>
</tr>
<tr>
<td>Formation potential of tropospheric ozone photochemical oxidants (kg Sb-Eq.)</td>
<td>1.12E-3</td>
<td>8.01E-7</td>
<td>1.17E-5</td>
</tr>
<tr>
<td>Abiotic depletion potential for non-fossil resources (kg H₂O-Eq.)</td>
<td>6.3E+3</td>
<td>1.38E+2</td>
<td>2.81E+2</td>
</tr>
<tr>
<td>Abiotic depletion potential for fossil resources (kg gravel-Eq.)</td>
<td>6.3E+3</td>
<td>1.38E+2</td>
<td>2.81E+2</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - RESOURCE USE: 1 ton of fibre cement slates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable primary energy as energy carrier (MJ)</td>
<td>1.06E+3</td>
<td>0.00E+0</td>
<td>7.28E+0</td>
<td></td>
</tr>
<tr>
<td>Renewable primary energy as material utilization (MJ)</td>
<td>5.51E+2</td>
<td>0.00E+0</td>
<td>2.45E+2</td>
<td></td>
</tr>
<tr>
<td>Total use of renewable primary energy resources (MJ)</td>
<td>1.51E+3</td>
<td>1.86E+1</td>
<td>2.52E+2</td>
<td></td>
</tr>
<tr>
<td>Non-renewable primary energy as energy carrier (MJ)</td>
<td>7.89E+3</td>
<td>0.00E+0</td>
<td>2.56E+2</td>
<td></td>
</tr>
<tr>
<td>Non-renewable primary energy as material utilization (MJ)</td>
<td>3.68E+2</td>
<td>0.00E+0</td>
<td>4.04E+1</td>
<td></td>
</tr>
<tr>
<td>Total use of non-renewable primary energy resources (MJ)</td>
<td>8.26E+3</td>
<td>1.56E+2</td>
<td>3.00E+2</td>
<td></td>
</tr>
<tr>
<td>Use of secondary material (kg)</td>
<td>IND</td>
<td>IND</td>
<td>IND</td>
<td></td>
</tr>
<tr>
<td>Use of renewable secondary fuels (MJ)</td>
<td>9.45E+1</td>
<td>1.36E-3</td>
<td>1.78E-2</td>
<td></td>
</tr>
<tr>
<td>Use of non-renewable secondary fuels (MJ)</td>
<td>1.45E+3</td>
<td>1.45E-2</td>
<td>2.04E-2</td>
<td></td>
</tr>
<tr>
<td>Use of net fresh water (m³)</td>
<td>2.57E+0</td>
<td>3.05E-2</td>
<td>-3.13E-1</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 ton of fibre cement slates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed (kg)</td>
<td>2.31E-3</td>
<td>6.87E-5</td>
<td>9.88E-5</td>
<td></td>
</tr>
<tr>
<td>Non-hazardous waste disposed (kg)</td>
<td>6.13E+0</td>
<td>3.85E-2</td>
<td>5.06E+1</td>
<td></td>
</tr>
<tr>
<td>Radioactive waste disposed (kg)</td>
<td>5.52E-1</td>
<td>7.91E-3</td>
<td>6.98E-3</td>
<td></td>
</tr>
<tr>
<td>Components for reuse (kg)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>Materials for recycling (kg)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>Materials for energy recovery (kg)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>Exported electrical energy (MJ)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>Exported thermal energy (MJ)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
</tbody>
</table>

6. LCA: Interpretation

The main environmental impact is from the cement production, covering 60-70% of the impact. The origin within the cement production is in this order: Calculation from clinker process >> emission from fossil fuel combustion in clinker production >> electricity for clinker process >> electricity for cement grinding.

Other significant impacts are from power consumption for the tile production and coating (15-20%), and minor impacts from the heat consumption from various fuels (10-15%).

The GWP value is dominated by CO₂ air emission accounting for 97-98% of the impact followed by methane with 2.3% and various other substances with very low impacts.

Negative impacts are related to CO₂ uptake in growth of wood which is used to product cardboard packaging and cellulosic fibre material. The CO₂ emission which will take place at disposal of packaging in module A5 is excluded as it represents a low GWP value (<10kg CO₂ eq/t product).

The figure below shows the GWP in details with specific origins within the modules A1-A3 for the production site.
For the renewable primary energy (PERM and PERE) there is approx. an equal split between the use for material and the use for energy, and virtually all in phase A1.

For the non renewable primary energy (PENRE and PENRM) the vast majority is primary energy consumption in module A1 and only a little part remaining as material (PENRM). The phases A2 and A3 are insignificant.

POCP impact is mainly from the cement processes, the power consumption, and painting line emissions. The substances causing the impacts are air emissions of carbon monoxide, nitrogen oxides, and sulphur dioxide, and unspecified VOCs all at 10-25%.

AP impact is dominated by the power consumption and cement production with 2/3 of the impact coming from sulphur dioxide and 1/3 from nitrogen oxides.

EP dominating impact is from the cement production with other significant values from production of fibres and the combined power consumption from tile production and coating. Approx. 75% of the impact is from nitrogen oxides emission to air and minor impacts are from freshwater emissions of COD, nitrate, nitrogen and phosphate.

POCP impact is mainly from the cement processes, the power consumption, and painting line emissions. The substances causing the impacts are air emissions of carbon monoxide, nitrogen oxides, and sulphur dioxide, and unspecified VOCs all at 10-25%.

The resource depletion of elements impact is virtually only from the cement production and is related to the sulfur content in gypsum and to a minor extent the sodium and chloride in rock salt.

ADP fossil most important impact is from the cement production followed by power consumption for tile production and coating. Also important is the production of fibres, and the additional consumptions of energy for tile production and for coating. The split is almost equal on ADP fossil related to crude oil, hard coal, lignite and natural gas; each making up 20-30% of the impact.

Depletion of the ozone layer is very small; hence almost negligible substance emission will seemingly cause a large impact and defining this as major result is questionable. The result is caused by very small emissions of R11 and R14.

7. Requisite evidence

7.1 Leaching
/Intron Report: A850950/R20100098/RZw/Nbe/ issued 25 March 2010 - Testing covered leaching due to inorganic components (15 metals and 4 anions) and composition of organic components. All components fulfill the requirements from the /BRL 5701/ and the /BRL 5071/.

8. References

Institut Bauen unnd Umwelt
Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles
for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04
www.bau-umwelt.de

ISO 14025
DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804
EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

PCR – Part A, 2016

PCR - Part B, 2014
PCR Guidance-Texts for Building-Related Products and Services, Part B: Requirements on the EPD for Fibre cement / Fibre concrete, version 1.6 04.07.2014, Institut Bauen und Umwelt e.V., 2014

/ISO 14001:2004/

/ISO 14040:2006/

Izolacja
Approval by Izolacja COBR PIB No 77/06/1/192/WC-2 and 77/06/1/330/WC-1/ (Poland)
The Research and Development Centre for Building Insulation industry, Katowice (COBR PIB, Katowice). Al. W. Korfantego 193, 30-157 Katowice, Poland.
MPA Hannover
Materialprüfanstalt für Werkstoffe und Produktionstechnik

PAVUS

/BRL 5071/

/BRL 1103/
BRL 1103 Roofs and outer walls with profiled fibre cement boards, version of 06-10-2005.

/TRGS 900/
Publisher
Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany
Tel +49 (0)30 3087748- 0
Fax +49 (0)30 3087748- 29
Mail info@bau-umwelt.com
Web www.bau-umwelt.com

Programme holder
Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany
Tel +49 (0)30 - 3087748 - 0
Fax +49 (0)30 – 3087748 - 29
Mail info@bau-umwelt.com
Web www.bau-umwelt.com

Author of the Life Cycle Assessment
thinkstep ApS
Raadhuspladsen 16
1550 Copenhagen V
Denmark
Tel +45 7020 3171
Fax +45 7020 3172
Mail info@thinkstep.com
Web www.thinkstep.com

Owner of the Declaration
Cembrit Holding A/S
Sohngaardsholmsvej 2
9100 Aalborg
Denmark
Tel +45 99 37 22 22
Fax +45 99 37 23 22
Mail info@cembrit.com
Web www.cembrit.com